

Agenda

- Background
- Objectives and Scope of Working Group (WG) 211
- New updates in WG211:
 - Table of Contents
 - Reliability Based Design
 - Fender Panel Design
 - Manufacturing of Fenders
 - Fender Testing Performance & Durability
 - Sustainability & Recycling

WG211 is a major rewrite of WG33 and a significantly more comprehensive document

This presentation is brief overview only

	© Jacobs 20.	22

Background - Fender Design Guidelines 1984 PIANC published a Supplement to Bulletin No. 45, containing design methods for fender systems (18 years); 2002, PIANC published WG33 to update Bulletin No. 45 (20 years and counting); Since the WG33 guideline was published: There have been further advances in design methods for fender systems Vessel types and sizes have increased WG145 has collected and analysed considerable berthing velocity and angle data, addressed reliability design, vessel dimensions and container vessel flare angles WG186 detailing mooring requirements for large ships at quay walls has been published Manufacturers have further researched materials, performance, durability and aging Many improvements to WG33 guidelines have been suggested by users WG211 was formed in 2019 to update WG33

3

Objectives and Scope of WG211

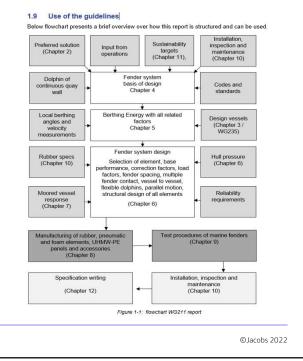
- PIANC WG211 is to replace WG33
- Key updates for WG211 are to include:
 - Review of fundamental principles and alignment with current practice;
 - Revised design data based on probabilistic analysis of new measurements of berthing velocity and berthing angles
 - Vessel data for port planning and design for all PIANC documents into a single publication (WG235)
 - Data on hull shapes;
 - Revisit vertical and horizontal forces on fenders;
 - Update design limits for hull pressures;
 - Addressing simulation software for evaluation of fender/vessel interaction;
 - Outline design guidelines for wheel fenders and foam filled fenders and pneumatic fenders.

©Jacobs 2022

Objectives and Scope of WG211

- Consider and incorporate relevant outcomes of other working groups.
- Review recent research by fender manufacturers and update guidance in relation to durability and performance;
- Provide guidance on design of other fender system components including facing panels, chains and fixings;
- Provide guidance on durability, maintenance and repair of fender system components.

©Jacobs 2022


5

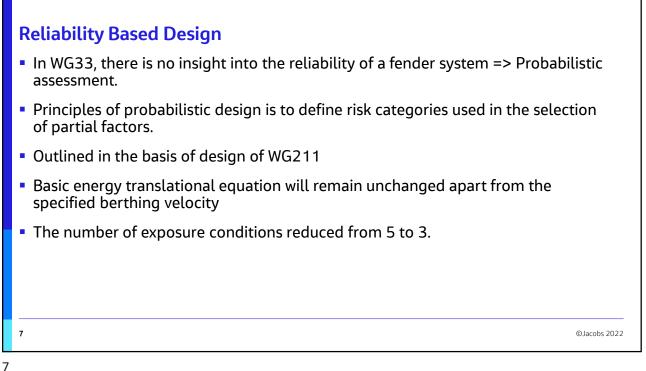
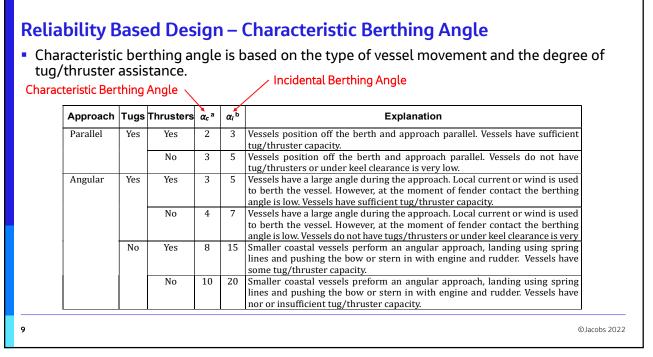

5

Table of Contents

Design Chapters

1	GENERAL ASPECTS			
2	INTRODUCTION TO THE PRINCIPALS OF FENDERING			
3	PARTICULAR ASPECTS REGARDING DESIGN VESSELS			
4	BASIS OF DESIGN			
5	BERTHING ENERGY			
6	FENDER SYSTEM DESIGN			
8	FENDER RESPONSE UNDER MOORED CONDITIONS 109			
9	MANUFACTURING OF FENDER SYSTEMS			
10	TEST PROCEDURES OF MARINE FENDERS			
11	INSTALLATION, INSPECTION AND MAINTENANCE (OLD)			
12	SUSTAINABILITY OF FENDERS			
13	SPECIFICATION WRITING 146			
14	REFERENCES (ADMINISTRATE PER CHAPTER) 152			
15	FORMATTING EXAMPLES HEADING 1 155			
API	PENDIX A: TEST PROTOCOL FOR CREATION OF FACTORS			
API	PENDIX B: THERMAL CONDUCTION OF RUBBER FENDERS			
API	PENDIX C: GLOSSARY, ABBREVIATIONS AND SYMBOLS			
API	PENDIX D: TERMS OF REFERENCE WG211 166			

'


Reliability Based Design – Characteristic Velocity

- The characteristic berthing velocity represents a probability of being exceeded per berthing per year of 0.02%. The velocities in Figure 1 are based on 100 berthing events per annum.
- These values can be adjusted for higher or lower berthing frequencies
- There is provision for velocity reduction for monitored berths in some cases

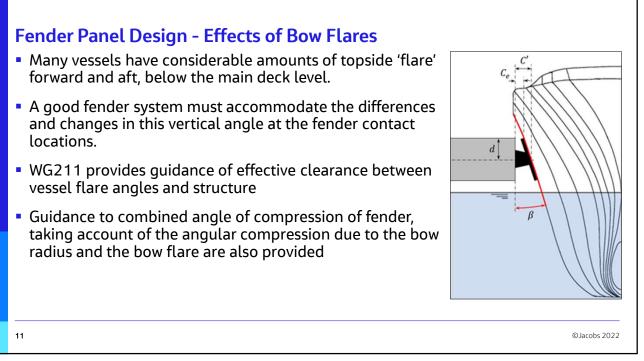
Type of vessel	V _B (m/s)			
	Favourable	Moderate	Unfavourable	
Cruise & passenger vessels	0.100	0.150	0.250	
Vehicle carriers	0.120	0.225	0.275	
Coaster, Feeder, Handysize	0.150	0.225	0.300	
Panamax, Handymax	0.120	0.225	0.275	
Post Panamax, Capesize (small), Aframax	0.100	0.175	0.275	
New Panamax, Capesize (large), Suezmax	0.100	0.175	0.250	
ULCV, VLBC, VLCC, ULCC	0.100	0.150	0.250	

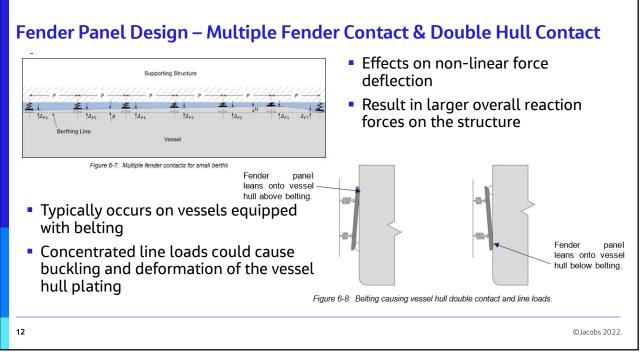
Figure 1 – Berthing Velocity Table

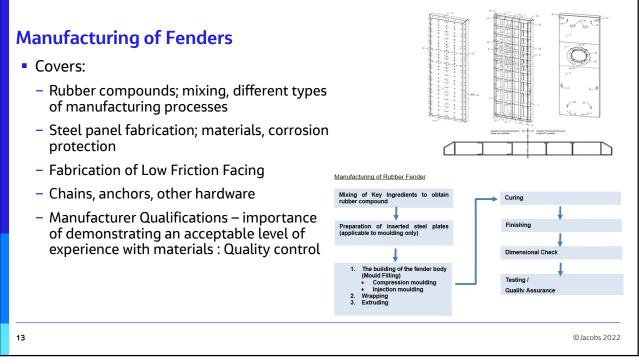
©Jacobs 2022

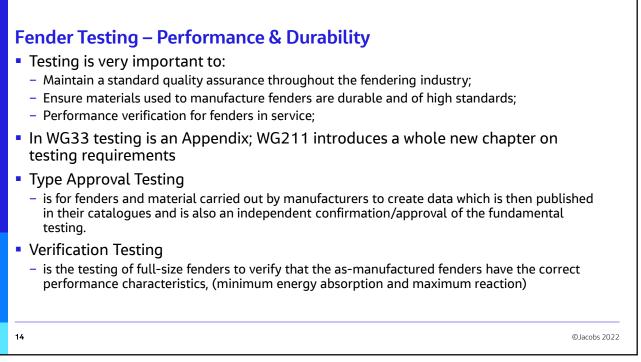
Reliability Based Design – Partial Energy Factor

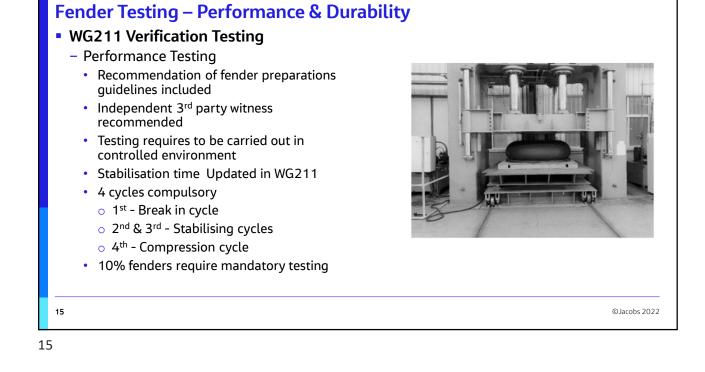
- Partial energy factor is applied to the characteristic berthing energy to cover uncertainty in the berthing energy calculation
- Consequences of failure (low, moderate, very high, e.g. class A, B, C, D & E)
- Navigation Conditions (monitored, favourable, moderate, unfavourable)
- Variation in water displacement (small and large vessels, empty or fully laden => CoV_M)
- Berthing frequency (γ_n)
- Pilots Assisted (γ_p)
- Relationship between velocity and vessel sizes, if any (γ_p)
- Single & Multiple fender Contact
 E_{kin;d}

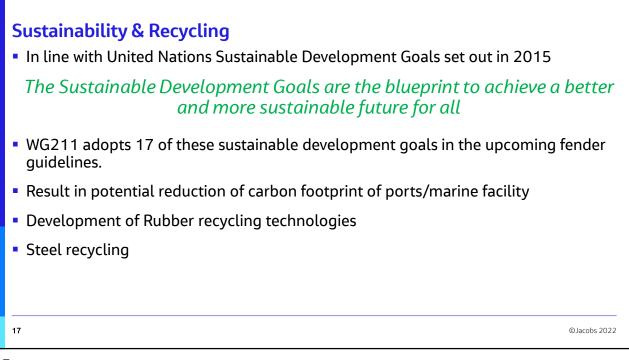

$$\gamma_E = \frac{kin;a}{E_{kin;c}} \approx C_{ab} = \frac{abnown}{E_{nomral}}$$

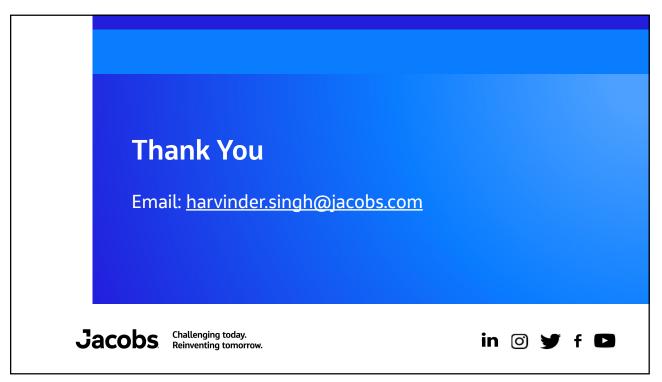

 $\gamma_E = \gamma_{E_{ref}} \gamma_n \gamma_p \gamma_\rho$


Reference partial energy factor Y_{Erel} Single fender contac Navigation Multiple fender o CoVM conditions Monitored ≥ 50% 1.25 1.10 ≥ 15% 1.30 1.15 < 15% 1.40 Favourable ≥ 50% 1.30 ≥ 15% 1.35 < 15% 1.50 Moderate ≥ 50% 1.35 1.20 ≥ 15% 1.45 1.25 < 15% 1.60 1.40 Unfavourable ≥ 50% 1.50 1.25 ≥ 15% 1.60 1.35 < 15% 1.80 1.50


©Jacobs 2022


10





	ender Testing – Performance & Durability WG211 Verification Testing
1	– Durability Testing
	 requires that a fender to be subjected to multiple cyclic loadings Min 3000 cycles recommended by WG211
	 WG211 will provide guidance to Engineers and end users on the level of risk mitigation durability testing can offer to the overall operational of the marine terminal if carried out.
	 Compliance criteria will be spelt out more clear – when to accept and when to NOT
•	Materials testing TGA - Thermo Gravimetric Analysis
•	 Updated physical properties testing updated Tensile strength, Elongation at break, compression set, tear resistance, ozone resistance
•	Testing of pneumatic and foam fenders updated in WG211 – Rubber compound testing, hardness tear resistance, tensile strength etc.
16	©Jacobs 2022

